Density of maximal computability structures CCA 2019

Konrad Burnik [†] Zvonko Iljazović[‡]

[†]ZOLA Electric, Netherlands

[‡]University of Zagreb, Croatia

Zagreb, Croatia, 9 July 2019

This work is supported by the Croatian Science Foundation (project 7459, CompStruct)

2 Does maximal imply dense?

2 Does maximal imply dense?

3 Does dense maximal imply separable?

Burnik Konrad, Iljazović Zvonko Density of maximal computability structures (Zagreb, Croatia, 9 July 2019 3 / 25

Definition

Let (X, d) be a metric space and (x_i) a sequence in X. We say (x_i) is an *effective sequence* in (X, d) if the function $\mathbb{N}^2 \to \mathbb{R}$

$$(i,j)\mapsto d(x_i,x_j)$$

is recursive.

A finite sequence x_0, \ldots, x_n is an *effective finite sequence* if $d(x_i, x_j)$ is a recursive real number for each $i, j \in \{0, \ldots, n\}$.

Definition

If (x_i) and (y_j) are sequences in X, we say $((x_i), (y_j))$ is an *effective pair* in (X, d) and write $(x_i) \diamond (y_j)$ if the function $\mathbb{N}^2 \to \mathbb{R}$,

 $(i,j)\mapsto d(x_i,y_j)$

is recursive.

Definition

Let (X, d) be a metric space and (x_i) a sequence in X. A sequence (y_i) is *computable w.r.t* (x_i) in (X, d) iff there exists a computable $F : \mathbb{N}^2 \to \mathbb{N}$ such that

$$d(y_i, x_{F(i,k)}) < 2^{-k}$$

for all $i, k \in \mathbb{N}$. We write $(y_i) \preceq (x_i)$.

Definition

Let (X, d) be a metric space. A set $S \subseteq X^{\mathbb{N}}$ is a computability structure on (X, d) if the following holds:

- $(x_i), (y_j) \in \mathcal{S}, \text{ then } (x_i) \diamond (y_j)$
- ② if $(x_i) \in S$ and $(y_j) \preceq (x_i)$, then $(y_j) \in S$

We say x is a computable point in S iff $(x, x, ...) \in S$.

Separable computability structures

Example

Let (X, d) be a metric space. Let $\alpha : \mathbb{N} \to X$ be an effective sequence which is dense in X. We define

$$S_{\alpha} = \{(x_i) \mid (x_i) \preceq \alpha\}$$

Then S_{α} is a computability structure on (X, d).

Separable computability structures

Example

Let (X, d) be a metric space. Let $\alpha : \mathbb{N} \to X$ be an effective sequence which is dense in X. We define

$$S_{\alpha} = \{(x_i) \mid (x_i) \preceq \alpha\}$$

Then S_{α} is a computability structure on (X, d).

Definition

Let $X \subseteq \mathbb{R}^n$. Let S be the set of sequences (x_i) in X which are computable in \mathbb{R}^n . We say S is a *canonical computability structure*.

Separable computability structures

Definition

A computability structure S such that there exists a dense sequence $\alpha \in S$ is called *separable*.

Separable computability structures

Definition

A computability structure S such that there exists a dense sequence $\alpha \in S$ is called *separable*.

Note

Not every computability structure on (X, d) is separable!

Maximal computability structures

Definition

We say S is a maximal computability structure on (X, d) if there exists no computability structure T such that $S \subseteq T$ and $S \neq T$.

Maximal computability structures

Definition

We say S is a maximal computability structure on (X, d) if there exists no computability structure T such that $S \subseteq T$ and $S \neq T$.

Note

Each computability structure is contained in some maximal computability structure.

Maximal computability structures

Definition

We say S is a maximal computability structure on (X, d) if there exists no computability structure T such that $S \subseteq T$ and $S \neq T$.

Note

Each computability structure is contained in some maximal computability structure.

Note

Every separable structure is maximal however a maximal structure need not be separable.

Dense computability structures

Definition

A computability structure S on (X, d) is *dense* if the set of all computable points in S is dense in (X, d).

Burnik Konrad, Iljazović Zvonko Density of maximal computability structures (Zagreb, Croatia, 9 July 2019 11 / 25

2 Does maximal imply dense?

3 Does dense maximal imply separable?

Burnik Konrad, Iljazović Zvonko Density of maximal computability structures (Zagreb, Croatia, 9 July 2019 12 / 25

Theorem

Let $X \subseteq \mathbb{R}^n$ be a convex set. Let S be a maximal computability structure on X with the Euclidean metric. Then S is dense.

Some known results used to prove this

I., Validžić 2016 [4]:

Proposition

Let $X \subseteq \mathbb{R}^n$ be such that d(x, y) is a recursive number for all $x, y \in X$. Then there exists an isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ such that each element of f(X) is a recursive point.

Some known results used to prove this

I., Validžić 2016 [4]:

Proposition

Let $X \subseteq \mathbb{R}^n$ be such that d(x, y) is a recursive number for all $x, y \in X$. Then there exists an isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ such that each element of f(X) is a recursive point.

Theorem

Let $X \subseteq \mathbb{R}^n$. Let \mathcal{M} be a maximal computability structure on (X, d_2) . Then there exists an isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $\{f(x_i) \mid (x_i) \in \mathcal{M}\}$ is a canonical computability structure on f(X).

Some known results used to prove this

I., Validžić 2016 [4]:

Proposition

Let $X \subseteq \mathbb{R}^n$ be such that d(x, y) is a recursive number for all $x, y \in X$. Then there exists an isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ such that each element of f(X) is a recursive point.

Theorem

Let $X \subseteq \mathbb{R}^n$. Let \mathcal{M} be a maximal computability structure on (X, d_2) . Then there exists an isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $\{f(x_i) \mid (x_i) \in \mathcal{M}\}$ is a canonical computability structure on f(X).

Theorem

Let $X \subseteq \mathbb{R}^n$ and let a_0, \ldots, a_k be maximal geometrically independent effective sequence in X. Then $\mathcal{R}^X_{a_0,\ldots,a_k}$ is a unique maximal computability structure on X in which a_0, \ldots, a_k are computable points.

2 Does maximal imply dense?

3 Does dense maximal imply separable?

Let S be a circle with a computable radius. Then every maximal computability structure on S is separable.

Let S be a circle with a computable radius. Then every maximal computability structure on S is separable.

Proposition

Let X be a boundary of a triangle in \mathbb{R}^2 with the Euclidean metric. Then there exists a maximal computability structure on X which is not separable.

Let X be a boundary of a triangle in \mathbb{R}^2 with the Euclidean metric. Then each dense maximal computability structure on X is separable.

Moreover, we have the following result:

Proposition

Let X be a boundary of a triangle in (\mathbb{R}^2, d_2) with vertices a, b, c. Then the following are equivalent:

- X has a separable computability structure.
- 2 $d_2(a, b)$, $d_2(b, c)$ and $d_2(a, c)$ are computable numbers.
- S X has a dense maximal computability structure.

Even more generally, we have:

Proposition

Let *K* be a nonempty finite simplicial complex of dimension 1 in \mathbb{R}^n , i.e. a family of line segments in \mathbb{R}^n and their vertices such that for each two line segments $I, J \in K$ such that $I \neq J$ and $I \cap J \neq \emptyset$ we have $I \cap J = \{v\}$, where *v* is a vertex of both *I* and *J*. Suppose that each vertex of *K* belongs to two distinct line segments of *K*. Let $X = \bigcup_{I \in K} I$. Then each dense maximal computability structure on *X* is separable.

Note

There exists a maximal computability structure on X which is not dense.

Let X be an n-dimensional sphere in \mathbb{R}^{n+1} with radius $r \ge 0$. If X has a dense maximal computability structure, then X has a separable computability structure and r is a computable number.

Theorem (B., I. 2014)

Let (X, d, α) be a computable metric space which has compact closed balls and the effective covering property. If $S \subseteq X$ is a co-recursively enumerable 1-manifold with finitely many connected components, then S is computable in (X, d, α) .

Theorem (B., I. 2014)

Let (X, d, α) be a computable metric space which has compact closed balls and the effective covering property. If $S \subseteq X$ is a co-recursively enumerable 1-manifold with finitely many connected components, then S is computable in (X, d, α) .

Proposition

Let $C \subset \mathbb{R}^2$ be a conic i.e. ellipse, parabola or a hyperbola. Then each dense maximal computability structure on C is separable.

There exists $X \subset \mathbb{R}^2$ homeomorphic to a circle and a maximal dense computability structure \mathcal{M} on X which is not separable.

References (1/2)

- Robert Bix. Conics and Cubics.

Springer-Verlag, Berlin-Heielberg-New York, 1998.

- Konrad Burnik, Zvonko Iljazović.
 Computability of 1-manifolds.
 Logical Methods in Computer Science, Vol. 10(2:8):1–28, 2014.
 - Zvonko Iljazović.

Local computability of computable metric spaces and computability of co-c.e. continua.

Glasnik Matematički, 47(1):1-20, 2012.

Zvonko Iljazović and Lucija Validžić.
 Maximal computability structures.
 Bulletin of Symbolic Logic, 22(4):445–468, 2016.

References (2/2)

- Alexander Melnikov. Computably isometric spaces Journal of Symbolic Logic, 78:1055–1085, 2013.
- Marian Pour-El and Ian Richards. Computability in Analysis and Physics. Springer-Verlag, Berlin-Heielberg-New York, 1989.
- M. Yasugi, T. Mori and Y. Tsujji. Effective properties of sets and functions in metric spaces with computability structure.

Theoretical Computer Science, 219:467-486, 1999.

M. Yasugi, T. Mori and Y. Tsujji. Computability structures on metric spaces. *Combinatorics, Complexity and Logic* Proc. DMTCS96 (D.S. Bridges et al), Springer, Berlin, 351–362, 1996.

Thank you!

Burnik Konrad, Iljazović Zvonko 25 / 25 Density of maximal computability structures (Zagreb, Croatia, 9 July 2019