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Abstract

The centrosymmetric QR decomposition of a centrosymmetric matrix was
introduced previously by the author in [I]. Let A be a square split-complex
matrix. We introduce the standard centrosymmetric matrix representation of
A denoted by cs(A). We prove that the QR decomposition of A is equivalent
to the centrosymmetric QR decomposition of cs(A).
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1. Introduction

An algebra 2 is an ordered pair (A, ) such that A is a vector space over a
field K and - : A x A — A is a bilinear mapping called multiplication.
Let ® = (R?,.), where - : R? x R? — R? is given by

(a,b) - (¢,d) = (ac+ bd, ad + bc) (1.1)

for all (a,b), (c,d) € R?. Tt is straightforward to verify that D is an algebra.
This is the well known algebra of split-complex numbers. The split-complex
numbers are also sometimes known as hyperbolic numbers. Similarly as for
the complex numbers, each real number x € R can be identified with the
pair (x,0). With this correspondence, the pair j = (0,1) has the property
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j%2 = +1 and j # £1. Due to this property, j is called the hyperbolic unit.
Since (z,y) = (x,0) + (0,1) - (0,y), in the following we shall denote a pair
(x,y) simply with x + jy.

The conjugate of z = a + jb is defined as z* = a — jb. For a hyperbolic
number z = a + jb we define the real part as Re (z) = a and hyperbolic part
as Hyp (z) = b. For the module we set |z| = 22* = a* — b? and we have
lw - z| = |w| - |z| for all w,z € ®. For an extensive overview of the theory
of hyperbolic numbers as well of their usefulness in Physics one can check
the literature, for example [2]. For the rest of this paper, we shall refer to
these numbers as split-complex numbers. By M, (D) we denote the set of all
n X n split-complex matrices i.e. matrices in which entries are split-complex
numbers. Note that Z € M, (D) if and only if there exist n x n real matrices
A, B such that Z = A+ jB. If A is a matrix then its transpose is defined as
aj; = a;; for all i, 7 and is denoted with A”. In the following we denote by
I,, the n x n identity matriz and by O,, the n x n zero matriz. Let J € M, (R)
be defined as J = antidiag(1,...,1) for each n. Note that J? = I. A matrix
R € M,(R) is upper-triangular if r; ; = 0 for all i > j. A real matrix R is
centrosymmetric if RJ = JR. An overview of centrosymmetric matrices can
be found in [4]. We denote by C'M,, (R) the set of all n x n centrosymmetric
real matrices.

If V is a finite-dimensional vector space then we denote by L£(V') the set
of all linear transformations V' — V. Recall that if V' is an n-dimensional
vector space and B = (vy,...,v,) an ordered basis for V', then every linear
transformation 7" : V' — V has an n X n matrix representation with respect
to B denoted [T']g. Further, for any two linear transformations S,7 : V — V
we have [SoT|z = [S]s[T]s. The standard ordered basis for R" i.e. the basis
(€1,...,€y) is defined as e; ; = 1 if i = j and e; ; = 0 otherwise.

Let 2 = (A, -) be an algebra. A representation of 2 over a vector space V
isamap ¢ : A — L(V) such that ¢(ai-az) = ¢(ar)op(ay) for all aj,as € A. If
V' is an n-dimensional vector space and B = (v, ..., v,) an ordered basis for
V' then every linear transformation 7' : V' — V has a matrix representation
T)s € M,(R). For each a € A we have ¢(a) € L(V). Since V is n-
dimensional, we have and ordered basis B and [¢p(a)|p € M,(R). A matriz
representation of 2 with respect to B is a map ¢ : A — M,(R) such that
¢p(a) = [¢(a)]p for all a € A. Further, we have ¢p(a; - as) = ¢(a1)s - ¢(az)s
for all a;,as € A. These are well known notions from representation theory,
for further information, one can consult one of the standard textbooks, for
example see [3].



2. Centrosymmetric representation of split-complex matrices

For the algebra ® of split-complex numbers the well-known matrix rep-
resentation c¢s : © — Ms(R) with respect to (eq, e3) is given by

- Re (Z) Hyp (Z) Vz e, (2'1)

“O = [y (2) Re(2) ]

It is straightforward to check that for all w,z € © we have cs(w - 2) =
cs(w)es(z).

Further, on the vector space M, (D) there is a natural multiplication
operation - : M, (D) x M,(®) — M, (D) given by

(A+jB)-(C+jD):=(AC+ BD) + j(AD + BC) (2.2)

for all A, B,C,D € M,(R). It is easy to verify that (M,(®),-) is an alge-
bra. In the following we refer to this algebra as the algebra of split-complex
(square) matrices and denote it with 9t,,.

Note that in the following whenever we have two matrices A, B € M, (D),
their product shall explicitly be written with a dot ’-’, e.g. A - B to indicate
multiplication defined in (2.2). Otherwise, if A, B € M, (R) we simply write
AB.

To state and prove our main result, we shall need the following well known
characterization of centrosymmetric matrices.

Proposition 2.1. Let A € My, (R). Then A € C My, (R) if and only if there
exist B,C € M,(R) such that

A= {JBC J%JJ} . (2.3)

Proof. Suppose

-

Since A is centrosymmetric, we have AJ = JA, or equivalently, in block-form
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This is equivalent to

JW JZ YJ XJ
JX JY ZJ WJ

We now have Z = JXJ and Y = JWJ, so

A (X awa
“wouxJ

Now, by choosing C' = JW and B = X and from the fact J? = I it follows
that A has the form ({2.3)).

Conversely, suppose A has the form (2.3). It can easily be shown by
block-matrix multiplication that AJ = JA, hence A is centrosymmetric. [

Proposition 2.2. The map cs : M, (D) — CMs,(R) defined as

A BJ
JB JAJ

s a matriz representation of M,. We call the representation cs the standard
centrosymmetric matrix representation of 9t,,.

Proof. Let W € M,(®) and Z € M,(D) be such that W = A+ jB and
Z =C+ jD. We now have

A BJ ¢ DJ
JB JAJ||JD JCJ

AC+BD  (AD+ BC)J
J(AD + BC) J(AC + BD)J

which proves the claim. O
Proposition 2.3. Let Q € M, (D). Then cs(Q1) = cs(Q)T.
Proof. Let QQ = A+ jB. Then

cs(A+jB) = [ (2.4)

es(W)es(2) = |

}:CS(W.Z)

es(Q) = cs(AT + jBT) = [AT BT‘]} |

JBT JATJ
On the other hand, keeping in mind that J? = J we have
r [4A BJ]" AT (JB)T AT BTJ
es(Q) = [JB JAJ] - {(BJ)T (JAJ)T] - {JBT JATJ1 |
Hence, cs(QT) = cs(Q)T. O



Proposition 2.4. The map cs is a bijection.

Proof. Injectivity. Let Z = A+ jB and W = C + jD and W # Z. From
this, it follows that A # C or B # D. Assume that A # C. Then

A BJ}

es(Z) = [JB JAJ i DJ]'

es(W) = {JD JC.J
Since A # C we have c¢s(Z) # c¢s(W). Let now B # D and assume that
cs(Z) = es(W). Then from cs(Z) = cs(W) it follows JB = JD. Now

multiplying JB = JD with J from the left implies B = D, which is a
contradiction. We conclude that c¢s(+) is injective.

Surjectivity. Let A € C'Ms,(R). By proposition we can find matrices B
and C such that holds. But then cs(B + jC') = A and since A was
arbitrary, we conclude that cs is surjective. Now, injectivity and surjectivity
of ¢s imply by definition that c¢s is a bijection. m

3. Correspondence of QR decompositions

Definition 3.1. Let A € M, (D). A pair (Q, R) with Q,R € M,(D) is a
QR decomposition of A over ® if the following holds:

1. Q is orthogonal, ie. QT - Q=Q-QT =1,
2. R is upper-triangular,

3. A=Q - R.

The notion of a m x n double-cone matriz was introduced in [I]. Here we
state the definition in block-form for the case of H € C' My, (R).

Definition 3.2. Let H € CM,,(R). Then H is a double-cone matriz iff
there exist A, B € M, (R) both upper-triangular such that

A BJ
"= [JB JAJ] '

Definition 3.3. Let Z € CM,(R). A pair (W,Y), with W, Y € CM,(R) is
a centrosymmetric QR decomposition of Z if the following holds:

1. W is orthogonal matrix,



2. Y is double-cone matrix,

3. Z=WY.

The algorithm to obtain an approximation of a centrosymmetric QR de-
composition of a given centrosymmetric matrix A was given in [I].

The following theorem provides one interpretation of the centrosymmet-
ric QR decomposition, in the case of square centrosymmetric matrices of
even order by establishing the equivalence of their centrosymmetric QR de-
composition with the QR decomposition of the corresponding split-complex
matrix.

Theorem 3.4. (QR decomposition correspondence) Let A € M, (D). Then
(Q,R) € M,(D) x M,(D) is a QR decomposition of A if and only if

(cs(Q),cs(R)) € CMs,(R) x CMs,(R)

is a centrosymmetric QR decomposition of cs(A) € C' My, (R).

Proof. Let (Q,R) € M,(®) x M,(D) be a QR decomposition of A. Let
W =cs(Q) and Y = ¢s(R). We have

| @ @J _[Ry  RyJ
w | ) vl

Since Q7 - Q = I it follows that cs(QT - Q) = cs(Q7)cs(Q) = ¢s(Q)Tes(Q) =
cs(I). From this we have c¢s(Q)Tes(Q) = I ie. WIW = I hence W is
orthogonal. Since R is upper-triangular and R = R; + j R, then by defini-
tion we have that both R; and R, are upper-triangular. Further, cs(R) is
centrosymmetric by definition. From this it follows that Y is centrosymmet-
ric double-cone. Finally, we have ¢s(A) = ¢s(@ - R) = ¢s(Q)cs(R). Hence,
(es(Q), cs(R)) is a centrosymmetric QR decomposition of cs(A).

Conversely, let (W,Y) = (es(Q), cs(R)). If (W,Y) is a centrosymmetric QR
decomposition of ¢s(A) then c¢s(A) = WY where W is centrosymmetric and
orthogonal and Y is a double-cone matrix. From the fact that W is cen-
trosymmetric we have (by Proposition that

(o W
W= [JW2 JWlJ]



Now the property of W being orthogonal i.e. the condition W*W = I implies

W1TW1 + W2TW2 (WlTWQ + W2TW1)J | (3.1)
JWIWy + WEW,)  JWIW, + WIwy)J| — I '

On the other hand, we have
Q=W+ W, R=Y+jY, (3.2)
First we prove that @) is orthogonal. From (|3.1) we obtain

QY- Q= Wi+ jWo)" - (Wi + jWa)
= (W] + Wy ) - (Wh + jWs)
= W] Wy + WIWa, + §(WI Wy + WIW)
=1+jO=1

The matrix Y is centrosymmetric and double-cone which implies

o[ v
O JYy, IV J

where both Y; and Y5 are upper-triangular. This now implies that cs™(Y') =
Y1 + jY5 is upper-triangular.

Finally, let us prove that QR = A. We have
Q-R=cs*W)es ™ H(Y) = cs ' (WY) = cs es(A)) = A.
We conclude that (@, R) is a QR decomposition of A. O

Example 3.5. Let

Ao [1H2 243
T 3445 445§

Note that A = W + jZ where

W= B ﬂ and Z — E g} . (3.3)



We have

1
woozJ] |3
JZ JwJ| T |4

Tt = N

cs(A) =cs(W+jZ) = [

DN = Ot W
— W N

2 3

By applying the CENTROSYMMETRICQR algorithm from [I] to cs(A) we
obtain the approximations:

—0.156594 —0.106019 —0.813126 0.550513 ]
0.106019 —0.156594 0.550513  0.813126
0.813126  0.550513 —0.156594 0.106019
0.550513  —0.813126 —0.106019 —0.156594 |

Q=

[4.51499  5.82806 4.41384  3.10078]
0 —0.525226 —0.525226 0
0 —0.525226 —0.525226 0
[3.10078  4.41384 5.82806  4.51499 |

R =~

Applying e¢s~! to Q and R yields:

cs1(Q) ~ [—0.156594 —0.106019 ny 0.550513 —0.813126]
N_0.106019 —0.156594| "7 |0.813126 0.550513 |

el (R) ~ [11499 582806 1 (310078 441384 ]
1 oo —os25226) 77| 0 —0.525226)

with A ~ es71(Q)-cs~*(R). Now, from Theorem|[3.4we conclude that (cs~(Q), s~ (R))

is an approximation of a QR decomposition of A.

4. Conclusion

We introduced the standard centrosymmetric representation cs for split-
complex matrices. Using this representation we proved that a QR decompo-
sition of a square split-complex matrix A can be obtained by calculating the
centrosymmetric QR decomposition introduced in [I] of its centrosymmetric
matrix representation cs(A).
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