Topological rays and lines as co-c.e. sets CCA 2013

Konrad Burnik and Zvonko Iljazović

Department of Mathematics, University of Zagreb

July 9, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Computable metric spaces

Definition

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space and $\alpha : \mathbb{N} \to X$ is a sequence with a dense image in X such that the function $\mathbb{N}^2 \to \mathbb{R}$

$$(i,j)\mapsto d(\alpha_i,\alpha_j)$$

is computable.

The points $\alpha_0, \alpha_1, \ldots$ are rational points or special points.

Computable metric spaces

Definition

A point $x \in X$ is **computable** in (X, d, α) if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

 $d(\alpha_{f(i)}, x) < 2^{-i}$

for all $i \in \mathbb{N}$.

Effective enumerations

- A set *I* is a rational ball if *I* = B(λ, ρ) where λ is a rational point and ρ ∈ Q⁺.
- We denote by (I_k) and $(\widehat{I_k})$ some fixed effective enumerations of open and closed rational balls respectively.

Definition

Let (X, d, α) be a computable metric space. A closed subset $S \subseteq X$ is a **co-computably enumerable set** if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$X \setminus S = \bigcup_{i \in \mathbb{N}} I_{f(i)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Computable sets

Definition

Let (X, d, α) be a computable metric space. A set $S \subseteq X$ is **computable** if

- 1. *S* is co-c.e.;
- 2. S is computably enumerable i.e. the set

$$\{i \in \mathbb{N} : S \cap I_i \neq \emptyset\}$$

is computably enumerable.

Computable sets

- ▶ If *S* is computable then it is clearly co-c.e.
- On the other hand if S is co-c.e., S doesn't have to be computable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Computable sets

- ▶ If *S* is computable then it is clearly co-c.e.
- On the other hand if S is co-c.e., S doesn't have to be computable.

Example

There exists a a co-c.e. line segment [0, a] with uncomputable a.

Question

- Let (X, d, α) be a computable metric space. Let $S \subseteq X$.
- Which topological conditions we have to impose on S so that the implication

$$S \text{ co-c.e} \implies S \text{ computable}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

holds ?

First we set our ambient space!

Definition

A computable metric space (X, d, α) is **nice** if it has the effective covering property and compact closed balls.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

In any nice computable metric space (X, d, α) we can effectively enumerate all rational open sets which cover a given **compact** co-c.e. set S.

Remark

In any nice computable metric space (X, d, α) we can effectively enumerate all rational open sets which cover a given **compact** co-c.e. set S.

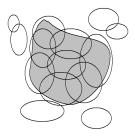
We observe only nice computable metric spaces.

Remark

In any nice computable metric space (X, d, α) we can effectively enumerate all rational open sets which cover a given **compact** co-c.e. set S.

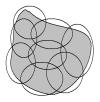
- ► We observe only nice computable metric spaces.
- What can we say about conditions under which a co-c.e. set S is computable in such an ambient space?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

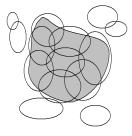


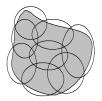
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

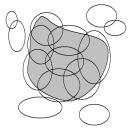
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

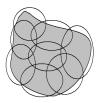


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



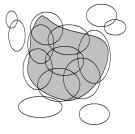


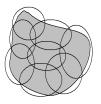




Remark

For compact co-c.e. sets the effective appoximation by a rational set implies computability!





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem

If a rational set $J = B_1 \cup \cdots \cup B_k$ covers S we cannot effectively determine which B_i intersect S.

Chains

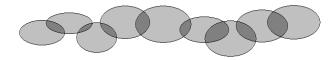
Definition

1. A finite sequence $C = (C_0, ..., C_m)$ of open sets in X is a **chain** if

$$|i-j| > 1 \implies C_i \cap C_j = \emptyset$$

for all $i, j \in \{0, \ldots, m\}$. Each C_i is called a **link**.

2. For $\epsilon > 0$ a finite sequence C_0, \ldots, C_m is an ϵ -chain if diametar of each C_i is less than ϵ .



Definition

A metric space A is an **arc** if A is homeomorphic to the segment [0, 1].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A metric space A is an **arc** if A is homeomorphic to the segment [0, 1].

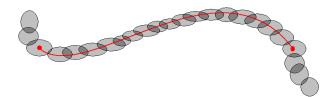
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

Every arc is a compact set.

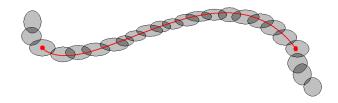
Lemma

Let (X, d, α) be a nice computable metric space. Let $\epsilon > 0$. Let S be an arc in X. Then there exists an ϵ -chain which covers S. Furthermore, we can effectively find an ϵ -chain with rational links which covers S.



Problem

We have "unnecessary" links which can not be effectively detected!



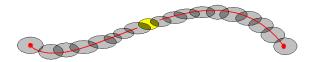
Remark

We can effectively enumerate all chains which start and end at the endpoints!



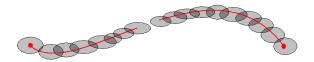
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remark Each link of such a chain must intersect the arc!



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose there's a link that **does not** intersect the arc.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contradiction!

Topological rays

A metric space R is a topological ray if R is homeomorphic to the interval [0,∞⟩.

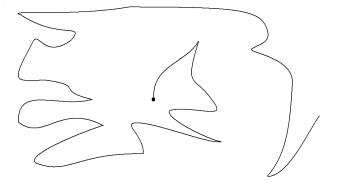
 If R is a topological ray and f : [0,∞) → R a homeomorphism. Then the point f(0) is called the endpoint of R.

Remark

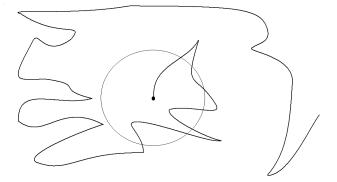
Being an endpoint doesn't depend on the choice of f.

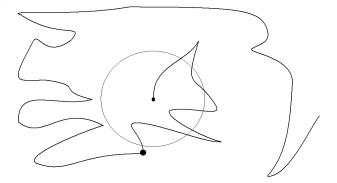
Topological rays

- If we have a closed set which is a topological ray then "it's tail converges to infinity".
- If we drop the condition that R is closed then this is not true! (for example set R=[0,1⟩))

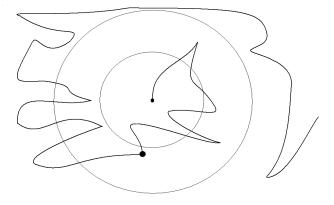


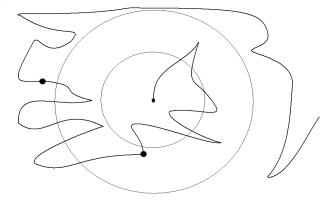
イロト イポト イヨト イヨト





э





◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• A topological ray is **not compact**!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- A topological ray is not compact!
- We do not have two computable endpoints!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A topological ray is not compact!
- We do not have two computable endpoints!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

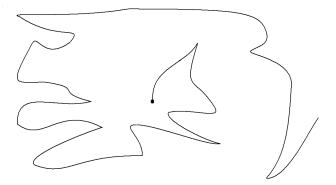
Nevertheless, we proved the following theorem.

Computability of co-c.e. topological rays

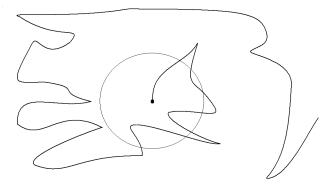
Theorem

Let (X, d, α) be a nice computable metric space. Let $R \subseteq X$ be a co-c.e. topological ray with a computable endpoint. Then R is computable.

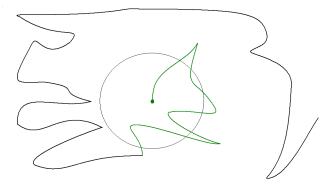
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



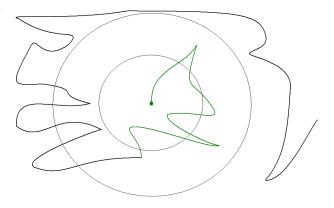
・ロト ・聞ト ・ヨト ・ヨト

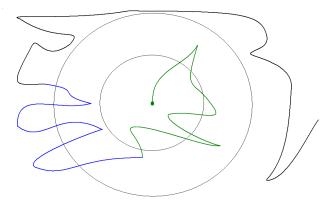


・ロト ・聞ト ・ヨト ・ヨト

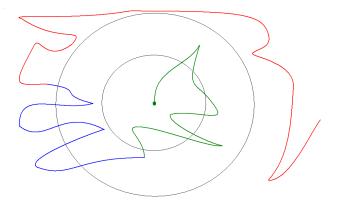


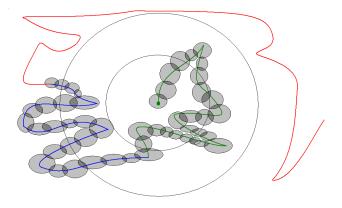
・ロト ・聞ト ・ヨト ・ヨト

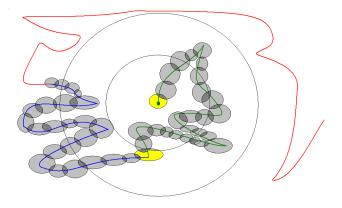




・ロト ・聞ト ・ヨト ・ヨト







æ

<ロ> (四) (四) (日) (日) (日)

Topological lines

1. A **topological line** is a metric space homeomorphic to \mathbb{R} .

2. If *L* is a closed set homeomorphic to a topological line then "both of it's tails converge to infinity".

A topological line is not compact!

- A topological line is not compact!
- We again do not have two computable endpoints!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A topological line is not compact!
- We again do not have two computable endpoints!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Nevertheless, we proved the following theorem.

Computability of co-c.e. topological lines

Theorem

Let (X, d, α) be a nice computable metric space. Let L be a co-c.e. set such that L is a topological line. Then L is computable.

Idea

Let L be a closed topological line. Let $f:\mathbb{R}\to L$ be a homeomorphism.

1. For each $r \in \mathbb{R}$ the sets $f(\langle \infty, r]$) and $f([r, \infty\rangle)$ are topological rays.

Idea

Let L be a closed topological line. Let $f:\mathbb{R}\rightarrow L$ be a homeomorphism.

1. For each $r \in \mathbb{R}$ the sets $f(\langle \infty, r]$) and $f([r, \infty\rangle)$ are topological rays.

2. If we find $r \in \mathbb{R}$ such that f(r) is computable and for which these sets are both co-c.e. we can apply the previous theorem.

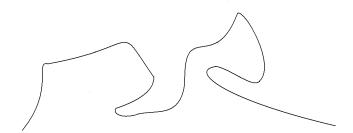
Idea

Let L be a closed topological line. Let $f:\mathbb{R}\to L$ be a homeomorphism.

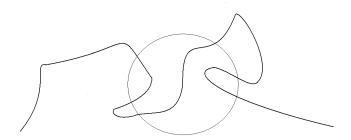
1. For each $r \in \mathbb{R}$ the sets $f(\langle \infty, r]$) and $f([r, \infty\rangle)$ are topological rays.

2. If we find $r \in \mathbb{R}$ such that f(r) is computable and for which these sets are both co-c.e. we can apply the previous theorem.

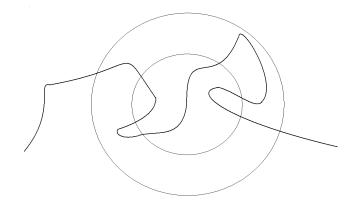
Problem Such r might not exist!



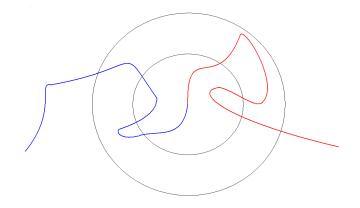
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



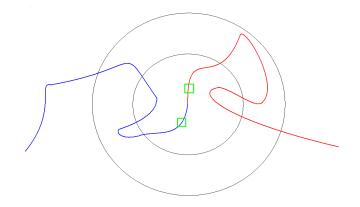
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



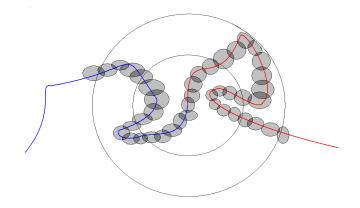
◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆



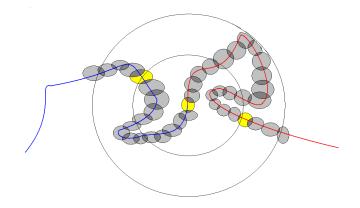
くして 「「」 (山下) (山下) (山下) (山下)



◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆



・ロト・西ト・西ト・日・ うらの

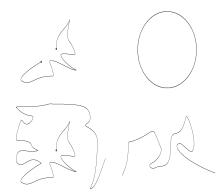


・ロト・西ト・西ト・日・ うらの

Definition

- A 1-manifold with boundary is a second countable Hausdorff topological space X in which each point has a neighborhood homeomorphic to [0,∞⟩.
- A boundary ∂X of X is the set of points x ∈ X for which every homeomorphism between a neighbourhood of x and [0,∞⟩ maps x to 0.

• If $\partial X = \emptyset$ then X is a **1-manifold**.



It is known that if X is a connected 1-manifold with boundary, then X is homeomorphic to ℝ, [0,∞⟩, [0,1] or the unit circle S¹.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Let (X, d, α) be a nice computable metric space. Suppose M is a co-c.e. set which is a 1-manifold with boundary and such that M has finitely many components. Then the following implication holds:

 ∂M computable \implies M computable .

In particular, each co-c.e. 1-mainfold in (X, d, α) with finitely many components is computable.

Theorem

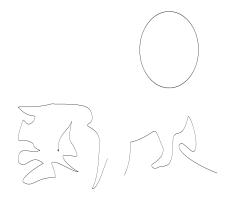
Let (X, d, α) be a nice computable metric space. Suppose M is a co-c.e. set which is a 1-manifold with boundary and such that M has finitely many components. Then the following implication holds:

 ∂M computable \implies M computable .

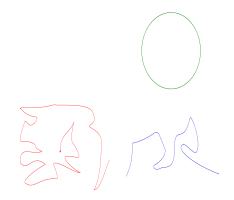
In particular, each co-c.e. 1-mainfold in (X, d, α) with finitely many components is computable.

Remark

This theorem does not hold if we drop the assumtion that M has finitely many components!



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

References

Vasco Brattka.

Plottable real number functions and the computable graph theorem.

SIAM J. Comput., 38(1):303-328, 2008.

Vasco Brattka and Gero Presser. Computability on subsets of metric spaces.

Theoretical Computer Science, 305:43–76, 2003.

Charles O. Christenson and William L. Voxman. Aspects of Topology. Marcel Dekker, Inc., New York, 1977.

Zvonko Iljazović.

Chainable and Circularly Chainable Co-c.e. Sets in Computable Metric Spaces.

Journal of Universal Computer Science, 15(6):1206–1235, 2009.

Zvonko Iljazović.

Co-c.e. Spheres and Cells in Computable Metric Spaces Logical Methods in Computer Science, Vol. 7(3:05):1–21, 2011.

Takayuki Kihara.

Incomputability of Simply Connected Planar Continua *Computability*, 1(2):131–152, 2012.

Joseph S. Miller. Effectiveness for Embedded Spheres and Balls. *Electronic Notes in Theoretical Computer Science*, 66:127–138, 2002.

S.B. Nadler.

Continuum theory.

Marcel Dekker, Inc., New York, 1992.

Stéphane Le Roux and Martin Ziegler. Singular coverings and non-uniform notions of closed set computability Math. Log. Q., 54:545-560, 2008.

Anant R. Shastri.

Elements of Differential Topology. CRC Press, Taylor and Francis Group, 2011.

Ernst Specker.

Der Satz vom Maximum in der rekursiven Analysis. Constructivity in Mathematics (A. Heyting, ed.). North Holland Publ. Comp., Amsterdam, 254–265, 1959.

Klaus Weihrauch.

Computable Analysis *Springer, Berlin,* 2000.

Thank you!